

BAD JOB
APT Fake Vacancy Campaign Targeting
Saudi Arabian Petro-Chemical Industry

Confidential | CyberInt Copyright © All Rights

Reserved 2018

 2
Confidential | CyberInt Copyright © All Rights Reserved 2018

Table of Contents

INTRODUCTION 3

ATTACK SUMMARY 4

FILE ANALYSIS 6

• <ARAMCO|SAMREF|SIPCHEM>.HTA 6
<ARAMCO|SAMREF|SIPCHEM>.HTA : EMBEDDED SCRIPT ONE 6
<ARAMCO|SAMREF|SIPCHEM>.HTA : EMBEDDED SCRIPT TWO 8
<ARAMCO|SAMREF|SIPCHEM>.HTA : EMBEDDED SCRIPT THREE 11
<ARAMCO|SAMREF|SIPCHEM>.HTA : EMBEDDED SCRIPT FOUR 11

• <FEED>.VBE 12

• REGISTRY.PS1 13

INDICATORS OF COMPROMISE (IOC) 16

• FILES 16

• DOMAINS 16

• IP ADDRESSES 17

• URLS 17

TABLE OF FIGURES 18

 3
Confidential | CyberInt Copyright © All Rights Reserved 2018

Introduction

Following the recent discovery of suspicious script files exposed on dynamic DNS (DDNS) hosts, presumably due to

misconfiguration by the threat actor given that the ‘directory listing’ option was enabled (Figure 1), CyberInt

investigated the content to determine its nature.

Following an analysis of all files, including multiple levels of script deobfuscation, these DDNS hosts appear to

contain lures and payloads consistent with an Iranian nexus state-sponsored threat actor. Given the organisations

identified within this content, the intended victims are likely individuals working in the petrochemical industry with

an apparent focus on Saudi Arabia.

Figure 1 – DDNS hosts exposing potential APT malicious scripts (‘directory listing’ enabled)

Based on the content found within this, and subsequently further identified, threat actor command and control

(C2) infrastructure, the campaigns utilise a lure masquerading as a job vacancy relevant to the target and, through

the download and execution of multiple stages of encoded scripts, appear to result in victim information being

transmitted to this C2 infrastructure, the delivery of further payloads and the execution of a reverse HTTP shell.

An initial investigation into the observed tactics, techniques and procedures (TTP) along with the identified

indicators of compromise (IOC) suggest consistencies and similarities between this campaign and previous APT33

activity, as reported by FireEye in 20171.

APT33, widely attributed as an Iranian state-sponsored threat actor, is believed to have been operating since at

least 2013 and was reported on during 2017. Typical targets for this threat actor appear to align with Iranian

national interests, specifically the aerospace, defence and petrochemical industries in Saudi Arabia, South Korea

and the United States. As observed in this campaign, previously identified APT33 TTP includes the use of spear-

phishing emails with weaponised HTML application files, often masquerading as job vacancies, as well as the

creation of domains and Dynamic DNS hosts, acting as C2 infrastructure, that utilise names impersonating

legitimate organisations relevant to the attack.

1 https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html

 4
Confidential | CyberInt Copyright © All Rights Reserved 2018

Attack Summary

Whilst the initial distribution vector has yet to be identified, previous campaigns sharing similar TTP suggest that

victims would be specifically targeted and lured into executing a weaponised HTML application (HTA). As with

previous campaigns, the HTA files contain job descriptions cloned from legitimate websites that would presumably

be of interest to the target victim. In the past, it is reported that victims would be targeted with spear-phishing

emails, recruitment-themed lures, containing links to the weaponised HTA file.

When lured into opening the HTA file, the victim is presented with the cloned job description whilst, in the

background, multiple malicious scripts are executed. In addition to ‘calling-home’, these scripts download

additional payloads to the victim as well as configuring scheduled tasks for persistence (Figure 2).

Rather than delivering multiple executable files, this campaign makes use of numerous JavaScript (JS), Visual Basic

(VBS) and PowerShell (PS) scripts which, along with utilising native Windows functions, allows the threat to ‘live off

the land’ and maintain a smaller footprint to evade detection. To counter analysis and potentially signature-based

detection, multiple layers of script obfuscation have also been employed and a file-less payload delivered for

execution in memory rather than being saved to disk.

In addition to the lure HTA files cloning job descriptions, the C2 DDNS subdomains and folder structures attempt to

masquerade as being associated with the same legitimate organisations. In this instance, three Saudi Arabian

organisations were identified used in the lures and masquerade C2 DDNS hosts:

 Saudi Arabian Oil Company (Aramco);

 Saudi International Petrochemical Company (SIPCHEM);

 The Saudi Aramco Mobil Refinery Co. Ltd. (SAMREF);

Additionally, the presence of filenames beginning with ‘POSH’, and subsequent discovery of the DDNS host name

‘mypsh.ddns.net’, suggests that a fourth organisation has also been targeted. This organisation could be related to

the ‘POSH Saudi Company’, a joint venture created in 20162 with ‘PACC Offshore Services Holdings Ltd’ that provides

offshore marine services to the petrochemical industry.

As such, this campaign likely targets victims employed at these, or other petrochemical industry organisations,

within the region. Furthermore, based on the TTP observed thus far, there are multiple consistencies and

similarities with previously reported APT333 activity, specifically:

 Targeting Saudi Arabian petrochemical industry (APT33 previously targeted Saudi Arabian, South Korea and

United States interests in the aerospace, defence and petrochemical industries);

 Malicious HTA files containing cloned job descriptions (APT33 previously sent targeted spear-phishing emails

to lure victims into opening the HTA payloads that posed as job vacancy details);

 Use of Dynamic DNS services for C2 infrastructure (In this instance ‘ddns.net’ appears to be favoured although

previously ‘servehttp.com’ has been used and both belong to the same ‘No-IP’ service hosted at ‘noip.com’).

2 https://www.offshoreenergytoday.com/posh-bolsters-middle-east-presence-with-new-jv/

3 https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html

 5
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 2 – Attack summary

 6
Confidential | CyberInt Copyright © All Rights Reserved 2018

File Analysis

As expected with any advanced threat, each script file in the attack utilises multiple levels of obfuscation to make

casual analysis difficult and often to thwart legacy signature-based detection. In this instance, multiple obfuscation

techniques appear to have been deployed although there are some observed similarities in the obfuscated code

and the output of exploits generated by Cobalt Strike, or a derivative. Furthermore, code reuse from previous

campaigns is not uncommon, even for advanced threat actors, as many will continue to reuse tried and tested

techniques if they continue to be effective.

 <aramco|samref|sipchem>.hta

Multiple HTML application (HTA) files were identified across three C2 hosts and masquerading as three Saudi

Arabian petrochemical organisations ‘Aramco’, ‘SAMREF’ and ‘SIPCHEM’. Based on TTP consistent with previous

campaigns, these HTA files are likely referenced by employment-themed lures sent to specific targets in the industry

and region.

Once accessed by the victim, the HTA file displays a ‘Please Wait to load job description …’[sic] message and loads

a HTML file containing the cloned job description in an iframe (Figure 3). Rather than being embedded within the

HTA file, the job description is hosted on the C2 DDNS host, presumably to allow the HTA payload to be reused with

minimal change; instead the threat actor can update or replace the cloned job description HTML file as and when

required.

Whilst the victim is distracted by the seemingly legitimate content, four obfuscated malicious scripts are executed

in the background.

Figure 3 – HTA lure purporting to 'load job description'

Clicking the ‘Apply Now’ link will attempt to redirect the victim to the legitimate job advertisement.

<aramco|samref|sipchem>.hta : Embedded Script One

The first embedded script, hexadecimal-encoded JavaScript, includes a single function which decodes another

hexadecimal-encoded string located between the second and third ‘unescape’ statements (Figure 4).

 7
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 4 – Hexadecimal-encoded string

‘Un-escaping’ the code surrounding the hexadecimal-encoding string allows the decoder function, to be viewed

(Figure 5).

Figure 5 – Decoder function revealed

Debugging this code within a controlled environment allows the final VBScript payload to be captured (Figure 6).

 8
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 6 – Final ‘VBScript’ payload

Analysis of the resulting VBScript suggests that it acts as a call-home beacon, sending details of the victim’s antivirus

software, obtained using native Windows Management Interface command-line (WMIC) functionality, along with

the victim’s domain name and username to a PHP script named ‘resiver.php’ on the C2 host.

The C2 PHP script in this instance, ‘resiver.php’, is potentially a misspelling of ‘receiver’ which would be consistent

with its apparent functionality.

<aramco|samref|sipchem>.hta : Embedded Script Two

Following the ‘<!-- PL -->’ HTML comment, the second embedded script utilises obfuscated variable names and

concatenation, rather than hexadecimal-encoding (Figure 7) to ultimately hide shellcode which launches a HTTP

reverse shell.

Figure 7 – Obfuscated variable names

Manual deobfuscation of this code is relatively simple, concatenating and renaming variables, allowing the script

functionality to be easily understood (Figure 8).

Figure 8 – Manually deobfuscated code

 9
Confidential | CyberInt Copyright © All Rights Reserved 2018

The creation of a ‘WScript.Shell’ object subsequently executes Microsoft PowerShell, included by default with

Microsoft Windows 7 onwards, and passes a base-64 encoded string which itself contains multiple layers of

obfuscation.

Figure 9 – Base-64 decoded PowerShell script

In addition to being base-64 encoded, the payload utilises Gzip compression. Utilising GCHQ’s CyberChef4 utility,

the following recipe can be used to decode the obfuscated content when passing only the base-64 content:

[{"op":"From Base64","args":["A-Za-z0-9+/=",true]},{"op":"Gunzip","args":[]}]

The resulting PowerShell script decodes yet another base-64 encoded string resulting in shellcode, a ‘file-less’

malicious payload (Figure 10). Through the use of various .NET API calls, this PowerShell script locates and allocates

space in memory into which this file-less malicious payload is copied and executed.

This code appears to have been used in a number of unrelated campaigns and is likely generated by a tool that is

not unique to this threat actor. Additionally, the resulting shellcode, when viewed as a hexadecimal dump, appears

to be consistent with Windows payloads generated by tools such as CobaltStrike or Metasploit, again suggesting

the use of off-the-shelf tools.

4 https://github.com/gchq/CyberChef

 10
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 10 – Final PowerShell script with ‘file-less’ malicious payload

Disassembly of the shellcode allows its functionality to be determined (Figure 11), namely the use of ‘wininet’ to

communicate with a webhost, and provides further confirmation that the payload is consistent with a Metasploit

Framework (MSF) reverse HTTP shell, detected by ClamAV as ‘Win.Trojan.MSShellcode-7’.

Figure 11 – Disassembled shellcode

 11
Confidential | CyberInt Copyright © All Rights Reserved 2018

Static analysis of this shellcode also identified a hardcoded C2 IP address, ‘192.119.15.35’, which is consistent with

the address that the identified C2 DDNS domains resolve to. Whilst no valid C2 traffic has been captured, execution

of the payload indicates that it connects to this IP address on port ‘448’.

Furthermore, inspection of the C2 DDNS hosts identified PowerShell scripts with filenames ending with numerical

values, such as ‘…448.ps1’, that could refer to port numbers. Given this, similar payloads using C2 hosts with

different port numbers may be configured.

<aramco|samref|sipchem>.hta : Embedded Script Three

Following the ‘<!—download MSFeeds -->’ HTML comment, the third embedded script utilises the same

hexadecimal-encoded obfuscation method as the first embedded script with a similar decode function (Figure 12).

Figure 12 – Similar obfuscation method

Using the same ‘un-escaping’ and debugging methods as before, a PowerShell command is revealed (Figure 13).

Figure 13 – PowerShell command

Once executed, this PowerShell script attempts to connect to the C2 DDNS host to download and execute an

encoded Visual Basic Script (VBE) file (Figure 14).

Figure 14 – VBE file download

Unlike the shellcode in the previous script which is memory-resident, this VBE file is download and stored locally

within the victim’s ‘AppData’ folder:

C:\Users\<Username>\AppData\Local\Microsoft\Feeds\MSFeeds.vbe

<aramco|samref|sipchem>.hta : Embedded Script Four

Following the ‘<!--add schtasks --> HTML comment, the fourth and final embedded again uses the favoured

hexadecimal-encoded obfuscation and decode function. As a result of deobfuscation and clean-up, it is clear to see

that the HTML comment accurately reflects the script action, namely the creation of multiple scheduled tasks using

the native Windows scheduled tasks utility ‘schtasks.exe’ (Figure 15).

 12
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 15 – Creation of scheduled tasks for persistence

Scheduled to run every two hours from 0100hrs to 2300hrs, twelve tasks are created to execute the locally-stored

VBE file, as downloaded in the third HTA embedded script. Notably, in this case, the downloaded file was named

‘MSFeeds.vbe’ whilst the scheduled tasks refers to ‘MSFeed.vbe’ (lacking the ‘s’), as such this particular payload

would fail to be executed as scheduled. Presumably, when configured correctly, this acts as a persistence

mechanism.

 <Feed>.vbe

Observed with filenames such as ‘MSFeed.vbe’ and ‘CHFeeds.vbe’, this encoded Visual Basic Script is dropped by

the third embedded script within the HTML application (HTA) phase and should, assuming the scheduled tasks are

configured correctly, execute on the victim machine every two hours daily from 0100hrs to 2300hrs.

As a Microsoft Script Encoded and Gzip compressed file, GCHQ’s CyberChef utility can be used to revert the file

back to its native Visual Basic code:

[{"op":"Microsoft Script Decoder","args":[]},{"op":"Gunzip","args":[],"disabled":true}]

Upon execution, the script will first determine if PowerShell is already running, if so, the process will be terminated

(Figure 16).

Figure 16 – Check for, and terminate, existing PowerShell processes

Subsequently, a new PowerShell process is created and executes a script that has been obfuscated using the

‘SecureString’ function (Figure 17).

 13
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 17 – Execution of 'SecureString' encoded PowerShell script

Comment: Notably, the code in Figure 17 is repeated both inside, and outside, of the ‘isPrcssRunning’ IF

statement. Whilst this is programmatically functional, it could be optimised and may suggest that

the script has been ‘hacked’ together from other code.

Debugging this code within a controlled environment allows the final PowerShell statement to be observed, namely

the creation of a new object that downloads another PowerShell script, ‘registry.ps1’, from the C2 server (Figure

18).

Figure 18 – PowerShell downloader

 Registry.ps1

Unsurprisingly, given every other script in this campaign analysed thus far, this PowerShell script file contains

multiple layers of obfuscation, starting with base-64 and ISO-8859-1 encoded content (Figure 19) that then reveals

another layer of base-64 encoding and compression.

Figure 19 – First layer of deobfuscation

Using GCHQ’s CyberChef, a single recipe can extract from, and decode, the original PS1 script:

[{"op":"Regular expression","args":["User defined","(?:-e\\s)(.+)",true,true,false,false,false,

false,"List capture groups"]},{"op":"From Base64","args":["A-Za-z0-9-_",true]},{"op":"Decode

text","args":["ISO-8859-1 Latin 1 Western European (28591)"]},{"op":"Regular expression",

"args":["User defined","(?:FromBase64String\\(')(.+)(?:'\\),)",true,true,false,false,false,false,

 14
Confidential | CyberInt Copyright © All Rights Reserved 2018

"List capture groups"]},{"op":"From Base64","args":["A-Za-z0-9+/=",true]},{"op":"Raw

Inflate","args":[0,0,"Adaptive",false,false]}]

Once processed, the resultant PowerShell script can be reviewed and additional C2 URLs determined (Figure 20).

Figure 20 – Additional C2 URLs

Analysis of this script on 5 November versus 6 November 2018 identified a change in C2 hosts suggesting that the

threat actor is actively maintaining this campaign or taking steps to mitigate or thwart investigations.

As of 5 November 2018, analysis of this file with SHA-1 hash ‘e075675f33a040061e39f40fb87660502fd432a4’

identified the following C2 URLs (defanged):

hxxp://mypsh.ddns.net:80

hxxp://mypsh.ddns.net:80/images/static/content/

hxxp://mypsh.ddns.net

Conversely, analysis of the same filename on 6 November 2018, as obtained from the same C2 but with SHA-1 hash

‘9562b143f50335fa1cf59e63df25fcda86b87324’ identified the following C2 URLs (defanged):

hxxp://www.pshserver.ga:80

hxxp://www.pshserver.ga:80/images/static/content/

hxxp://www.pshserver.ga

When executed, the script appears to obtain system information (Figure 21), similar to the earlier script,

including the domain name, username, computer name, process architecture and process ID. Of these, the

username and process ID appear to be those under which the script is running. Subsequently, this victim

information is concatenated into a single string and encoded in preparation for ‘call-home’ communications.

Figure 21 – Collection of victim information

Prior to sending the collected victim information, a date test (Figure 22) is performed to check that the current date

falls before ‘29/12/2020’. Presumably acting as a long-term kill switch, the script will exit if this test fails.

Figure 22 – Date test

Additionally, this script provides unused functionality for the configuration of a proxy as well as setting HTTP

headers for ‘User-Agent’, ‘Referer’ and a cookie ‘SessionID’ (Figure 23).

 15
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 23 – HTTP Header configuration

Notably, the ‘SessionID’ cookie HTTP header contains the encoded victim information string which will be received

by the C2 host upon connection. Furthermore, the use of a specific ‘User-Agent’ and ‘Referer’ string may serve as

a way of ensuring that the C2 only communicates with legitimate victim machines.

 16
Confidential | CyberInt Copyright © All Rights Reserved 2018

Indicators of Compromise (IOC)

 Files

Hosted on mynetwork.ddns.net:880:

216fe0fdfbb56523c016a57b1f7f80e9849c639c CHFeeds.vbe [2nd Stage; Scheduled task]

9562b143f50335fa1cf59e63df25fcda86b87324 registry.ps1 [3rd Stage; 6 November 2018 Version]

e075675f33a040061e39f40fb87660502fd432a4 registry.ps1 [3rd Stage; 5 November 2018 Version]

742b79e13b57d148611edf89e43d7ab0573db1d9 samref\index.png [Lure image]

8d56a757b251cdc8ae8157aac96aa73f08aedbe0 samref\main_banner.jpg [Lure image]

d06adb8f2629e39ce2faf36fa6f2f28a91b43a3c samref\posh80.ps1 [References ‘mypsh.ddns.net’]

055920b093cfc5030d617ac2511c74051cf53288 samref\posh443.ps1 [References ‘mypsh.ddns.net’]

ee5ba281bcec3544e41dcd1dad6b3f12e6de2ee8 samref\samref448.ps1

70939f938be083e13961791b4b31b064087741ab samref\samrefjobs.html [Lure job description]

03f11ac16c72e26707119725864a98b7ffb642ae samref\SamrefJobsVacancies.hta [1st Stage]

7b3e3b26b24ecaa125705f2ad0db4b7439e9e22b samref\sty.css [Lure CSS]

Hosted on aramcojobs.ddns.net:880:

7454790ad5619c80f32c8bc202a33043f133ed10 aramco\AramCoJobs.hta [1st Stage]

853d8eb287ae013b6e4f293eaf9ef16d41d92c40 aramco\emaillogo.png [Lure image]

dc0d60a841dbfa2629e2694ec0cafb9bd3059e06 aramco\sty.css [Lure CSS]

(dc0d60a841dbfa2629e2694ec0cafb9bd3059e06) aramco\style.css [Lure CSS]

(dc0d60a841dbfa2629e2694ec0cafb9bd3059e06) aramco\style2.css [Lure CSS]

e1502361b647f189592575fb3879f07db943caa6 aramco\aramcocareers.html [Lure job description]

5fd81868f9c37f451f9bb9cecfa178a60d7384de aramco\aramcocareers2.html [Lure job description]

Hunt-identified related threats:

441e092325d266b47356615086def5f5164292fb [Scheduled task creation script]

2eb88b870a3bcfefe7add0dcd814a6dc4922f846 [Scheduled task creation script]

0d7d7ef245b54a7755c00cc4a31f880dea066731 [Scheduled task creation script]

19620c0ceca8f22a3e0090013fdd8396ecc4b030 [Lure job description; Aramco; HTA]

dcf76dca0ef348e4c6d9345b995e26206010b66d [Lure job description; Aramco; HTA]

1fe5bddd0105d66d23c947be87117a0788b9390e [Lure job description; Aramco; HTA]

9fe61a81c183af49a466569bd51b475598c2b4e6 [Lure job description; SIPCHEM; HTA]

 Domains

aramcojobs.ddns.net [DDNS; 192.119.15.35]

mynetwork.ddns.net [DDNS; 192.119.15.35]

mynetwork2.ddns.net [DDNS]

mypsh.ddns.net [DDNS]

pshserver.ga

remote-server.ddns.net [DDNS; OSINT Link; Previously associated with 192.119.15.35]

saharapcc.ddns.net [DDNS; OSINT Link; Previously associated with 192.119.15.35]

sipchem.ddns.net [DDNS]

 17
Confidential | CyberInt Copyright © All Rights Reserved 2018

 IP Addresses

192.119.15.35 [aramcojobs.ddns.net; mynetwork.ddns.net; Assigned to ’24 Shells, US’]

 URLs

hxxp://192.119.15.35:880/resiver.php

hxxp://aramcojobs.ddns.net:880/aramco/aramcocareers.html

hxxp://aramcojobs.ddns.net:880/aramco/aramcocareers2.html

hxxp://aramcojobs.ddns.net:880/aramco/AramCoJobs.hta

hxxp://aramcojobs.ddns.net:880/aramco/resiver.php

hxxp://aramcojobs.ddns.net:880/aramco/emaillogo.png

hxxp://aramcojobs.ddns.net:880/aramco/sty.css

hxxp://aramcojobs.ddns.net:880/aramco/style.css

hxxp://aramcojobs.ddns.net:880/aramco/style2.css

hxxp://mynetwork.ddns.net:880/CHFeeds.vbe

hxxp://mynetwork.ddns.net:880/registry.ps1

hxxp://mynetwork.ddns.net:880/aramco-p80.ps1

hxxp://mynetwork.ddns.net:880/aramco-p443.ps1

hxxp://mynetwork.ddns.net:880/samref/index.png

hxxp://mynetwork.ddns.net:880/samref/main_banner.png

hxxp://mynetwork.ddns.net:880/samref/posh80.ps1

hxxp://mynetwork.ddns.net:880/samref/posh443.ps1

hxxp://mynetwork.ddns.net:880/samref/samref448.ps1

hxxp://mynetwork.ddns.net:880/samref/samrefjobs.html

hxxp://mynetwork.ddns.net:880/samref/SamrefJobsVacancies.hta

hxxp://mynetwork.ddns.net:880/samref/sty.css

hxxp://mynetwork2.ddns.net:880/sipchemp443.ps1

hxxp://mypsh.ddns.net

hxxp://mypsh.ddns.net:80/images/static/content/

hxxps://mypsh.ddns.net

hxxp://sipchem.ddns.net:880/sipchemcareers.html

hxxp://www.pshserver.ga

hxxp://www.pshserver.ga:80/images/static/content/

 18
Confidential | CyberInt Copyright © All Rights Reserved 2018

Table of Figures

Figure 1 – DDNS hosts exposing potential APT malicious scripts (‘directory listing’ enabled) ____________________________ 3
Figure 2 – Attack summary __ 5
Figure 3 – HTA lure purporting to 'load job description' ___ 6
Figure 4 – Hexadecimal-encoded string __ 7
Figure 5 – Decoder function revealed __ 7
Figure 6 – Final ‘VBScript’ payload __ 8
Figure 7 – Obfuscated variable names ___ 8
Figure 8 – Manually deobfuscated code __ 8
Figure 9 – Base-64 decoded PowerShell script ___ 9
Figure 10 – Final PowerShell script with ‘file-less’ malicious payload __ 10
Figure 11 – Disassembled shellcode __ 10
Figure 12 – Similar obfuscation method ___ 11
Figure 13 – PowerShell command ___ 11
Figure 14 – VBE file download __ 11
Figure 15 – Creation of scheduled tasks for persistence __ 12
Figure 16 – Check for, and terminate, existing PowerShell processes __ 12
Figure 17 – Execution of 'SecureString' encoded PowerShell script __ 13
Figure 18 – PowerShell downloader __ 13
Figure 19 – First layer of deobfuscation ___ 13
Figure 20 – Additional C2 URLs __ 14
Figure 21 – Collection of victim information ___ 14
Figure 22 – Date test __ 14
Figure 23 – HTTP Header configuration ___ 15

 19
Confidential | CyberInt Copyright © All Rights Reserved 2018

United Kingdom
Tel: +442035141515
25 Old Broad Street | EC2N 1HN | London | United Kingdom

USA

Tel: +972-3-7286-777

214 W 29th St | 2nd Floor | New York | NY 10001

Israel

Tel: +972-3-7286777 Fax: +972-3-7286777

Ha-Mefalsim 17 St | 4951447 | Kiriat Arie Petah Tikva | Israel

Singapore

Tel: +65-3163-5760

10 Anson Road | #33-04A International Plaza 079903 | Singapore

sales@cyberint.com

mailto:sales@cyberint.com

