

WORDPRESS
MASS-INJECTIONS
Obfuscated JavaScript Chain

Confidential | CyberInt Copyright © All Rights Reserved 2018

 2
Confidential | CyberInt Copyright © All Rights Reserved 2018

Table of Contents

INTRODUCTION 3

POTENTIAL VULNERABILITY 3

• WORDPRESS DUPLICATOR PLUGIN REMOTE CODE EXECUTION 3

ANALYSIS 5

• INJECTED PAYLOAD 5

• INITIAL SCRIPT DEOBFUSCATION 5

• SECONDARY SCRIPT DEOBFUSCATION 6

• TERTIARY SCRIPT DEOBFUSCATION 8

RECOMMENDATIONS 10

INDICATORS OF COMPROMISE 10

• DOMAIN 10

• URI 10

• SHA-256 10

• PATTERNS 10

APPENDIX A – DEOBFUSCATION ‘CYBERCHEF’ RECIPE 11

TABLE OF FIGURES 12

 3
Confidential | CyberInt Copyright © All Rights Reserved 2018

Introduction

During a recent investigation using CyberInt’s Argos™ platform, a number of websites were identified as using the

popular open-source WordPress content management system and discovered to be compromised with suspicious

obfuscated JavaScript.

Subsequent analysis of the obfuscated JavaScript on these initial websites led to the discovery of over 1,600 further

sites exhibiting similar payloads, seemingly as part of mass-injection campaigns against vulnerable WordPress

installations.

Whilst campaigns of this nature are unfortunately commonplace, targeting vulnerable or out-of-date WordPress

websites, this discovery reiterates the need for website owners to ensure that their installations are well

maintained, minimising the time between vulnerabilities being discovered and patched, as well as demonstrating

how regular site content audits or monitoring could alert website owners to these unauthorised changes.

Potential Vulnerability

Based on a review of the websites identified as currently compromised, a variety of WordPress versions and plugins

have been identified. As such it is likely that multiple vulnerabilities are being exploited, potentially by multiple

campaigns and threat actors, in some cases resulting in one website having multiple instances of injected nefarious

payloads.

Whilst many websites may employ old WordPress and plugin versions, likely detectable and exploitable by

automated processes, the following recently announced vulnerability is reportedly being exploited by those

conducting mass-injection campaigns.

 WordPress Duplicator Plugin Remote Code Execution

Affecting version 1.2.40 and earlier, this remote code execution vulnerability1, discovered by researchers at

Synacktiv2, is present within the Duplicator3 plugin which provides the ability for administrators to migrate or clone

their WordPress sites from one location to another.

Following the use of this plugin, a number of PHP files remain on the migrated or cloned site (Figure 1) which can

be reused to inject malicious code, such as that used to subsequently inject the JavaScript payloads identified in

these campaigns.

1 https://wpvulndb.com/vulnerabilities/9123

2 https://www.synacktiv.com/ressources/advisories/WordPress_Duplicator-1.2.40-RCE.pdf

3 https://snapcreek.com/

 4
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 1 – Example files remaining following the use of Duplicator v1.2.40 or earlier

Furthermore, a ZIP-compressed archive, containing a full copy of the site, in addition to a SQL database backup file

(Figure 2) also remains and can potentially expose sensitive data.

Figure 2 – Example Duplicator generated MySQL backup file (Header comments)

Of the sites observed using a vulnerable version of this plugin, exposed data was detected including API credentials

for cloud services, such as Amazon Web Services, as well as API credentials for PayPal (Figure 3).

Figure 3 – Example exposed PayPal API credentials

In addition to potentially abusing cloud service credentials for further nefarious activities, the PayPal API credentials

could allow the account holder’s balance to be queried (Figure 4) along with various transaction processes, including

refunds, potentially permitting fraudulent activity.

Figure 4 – Example PayPal API query response showing account balance (USD 7.00)

Whilst this vulnerability has now being patched by the vendor4, administrators are recommended to ensure that all

installation, and potentially sensitive, files are removed post-migration.

4 https://snapcreek.com/duplicator/docs/changelog/?lite

 5
Confidential | CyberInt Copyright © All Rights Reserved 2018

Analysis

 Injected Payload

The injected JavaScript payload, composed as a single line and detected on numerous WordPress websites in this

campaign, is typically present after the HTML ‘<head>’ tag as well as being observed at the beginning of JS files. It

is also understood that PHP files are targeted and injections may occur at other locations within the targeted files.

The injected JavaScript features multiple rounds of basic obfuscation to mask the true intentions and likely prevent

suspicious domains from being detected by casual analysis. In the first instance, the injected ‘script’ tag contains a

single ‘eval’ evaluation statement which is used to decode the decimal character codes (Figure 5).

Figure 5 – Injected obfuscated JavaScript

 Initial Script Deobfuscation

Decoding the decimal values, allows the second level of JavaScript to be viewed (Figure 6).

 6
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 6 – Deobfuscation round one (decodes as a single line but ‘beautified’ for ease of analysis)

The resulting code creates a new ‘script’ element within the Document Object Model (DOM) with the ‘src’ attribute

(Figure 7) being set to another decimal encoded string.

Figure 7 – Deobfuscation of the new ‘script’ element ‘src’ attribute

Subsequently, all ‘script’ tags within the DOM are tested to determine if the appropriate attribute is present by

comparison with yet another decimal encoded string (Figure 8). If not, the new ‘script’ element is appended to the

HTML ‘head’ section within the DOM.

Figure 8 – Deobfuscation of the comparison string, a substring of the ‘src’ attribute

 Secondary Script Deobfuscation

Whilst now seemingly offline or inaccessible, the referenced JavaScript, hosted on ‘examhome[.]net’ utilises the

same method of obfuscation (Figure 9) as the initial script.

 7
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 9 – Obfuscated script hosted on ‘examhome[.]net’

Notably in this JavaScript, two ‘eval’ evaluation statements are present, the first of which appears to create a ‘script’

element within the DOM that references a page tracking script on the legitimate ‘Innocraft Matomo Analytics’

platform ‘innocraft.cloud’5 (Figure 10).

5 https://www.innocraft.cloud/

 8
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 10 – Deobfuscation of the web analytics script

The use of legitimate web analytics may allow the threat actor(s) to monitor the spread of their injections as well

as determining the number of victim visitors to each compromised WordPress installation.

The second ‘eval’ statement, as in the originally injected script, creates a new ‘script’ element within the DOM

(Figure 11).

Figure 11 – Deobfuscation of the ‘script’ tag creation

This new ‘script’ element again uses a decimal encoded value for the ‘src’ attribute (Figure 12).

Figure 12 – Deobfuscation of the ‘src’ attribute

 Tertiary Script Deobfuscation

Unsurprisingly utilising the same obfuscation routine, the third script in this chain contains a single eval statement

and decimal encoded string ().

 9
Confidential | CyberInt Copyright © All Rights Reserved 2018

Figure 13 – Obfuscated script hosted on ‘mp3menu[.]org’

Deobfuscation of this encoded string reveals a script which includes code to both configure and interact with cookie

values (Figure 14), finally, the victim visitor is redirected to the decimal encoded URL (Figure 15).

Figure 14 – Deobfuscation of the final script

Figure 15 – Deobfuscation of the final URL

This final script appears test for the presence of a cookie named ‘mp3menu’ which, if not found, is created with a

value of 'mp3menu=yes' and an expiry time of 8 hours. Subsequently, the victim visitor is redirected, via a

'window.location.replace' and 'window.location.href' to the final PHP payload.

 10
Confidential | CyberInt Copyright © All Rights Reserved 2018

Notably, the use of 'window.location.replace' and 'window.location.href' will prevent the user from using the 'back'

function of their browser.

In testing no additional payload or content could be obtained from the ‘mp3menu[.]org’ server and as such, the

intent of the final ‘red.php’ could not be fully determined. That being said, reports following this campaign suggest

that further redirections, forced advertisements and potentially malicious or fraudulent content has been displayed

to victim visitors.

Recommendations

Given the ongoing nature of campaigns such as this it is imperative that WordPress site owners take steps to ensure

that their installations and plugins are regularly maintained and patched.

Additionally, site owners should consider auditing existing deployments and monitoring sites for unauthorised

changes, so as to provide an early warning indication and minimise the impact of any modification.

Sites that are already identified as compromised sites will likely need to be taken offline for investigation, followed

by a thorough review and removal process to ensure that any changes are reverted and any persistence

mechanisms eliminated.

Indicators Of Compromise

 Domain

examhome[.]net

examhome[.]innocraft.cloud

mp3menu[.]org

 URI

hxxps://examhome.net/stats.js?v=1.0.2

hxxps://mp3menu.org/mp3.js

hxxps://mp3menu.org/red.php

 SHA-256

mp3.js: 1c5e81d88da84cdb23f87b9dac5d09e31f3e0285767139e9e0609779add17001

 Patterns

Double decimal encoded value: "examhome.net" as present within the initial injection:

49, 48, 49, 44, 32, 49, 50, 48, 44, 32, 57, 55, 44, 32, 49, 48, 57, 44, 32, 49, 48, 52, 44, 32, 49, 49, 49, 44, 32, 49,

48, 57, 44, 32, 49, 48, 49, 44, 32, 52, 54, 44, 32, 49, 49, 48, 44, 32, 49, 48, 49, 44, 32, 49, 49, 54

 11
Confidential | CyberInt Copyright © All Rights Reserved 2018

Appendix A – Deobfuscation ‘CyberChef’ Recipe

The following JSON ‘recipe’ can be used with the GCHQ open-source project ‘CyberChef’

(https://github.com/gchq/CyberChef/) to decode the obfuscated scripts. Having loaded the recipe, simply

paste the complete JavaScript within the ‘Input’ section and the target URL will be displayed in the ‘Output’

section:

[

 { "op": "Regular expression",

 "args": ["User defined", "(\\d{2,3},\\s)+\\d{2,3}", true, true, false, false, false, false, "List

matches"] },

 { "op": "From Decimal",

 "args": ["Comma"] },

 { "op": "Regular expression",

 "args": ["User defined", "(\\d{2,3},\\s)+\\d{2,3}\\)", true, true, false, false, false, false, "List

matches"] },

 { "op": "Find / Replace",

 "args": [{ "option": "Regex", "string": "\\)" }, ", 10", true, false, true, false] },

 { "op": "From Decimal",

 "args": ["Comma"] }

]

Figure 16 - Example CyberChef output

 12
Confidential | CyberInt Copyright © All Rights Reserved 2018

Table of Figures

Figure 1 – Example files remaining following the use of Duplicator v1.2.40 or earlier _________________________________ 4
Figure 2 – Example Duplicator generated MySQL backup file (Header comments) ____________________________________ 4
Figure 3 – Example exposed PayPal API credentials __ 4
Figure 4 – Example PayPal API query response showing account balance (USD 7.00) __________________________________ 4
Figure 5 – Injected obfuscated JavaScript __ 5
Figure 6 – Deobfuscation round one (decodes as a single line but ‘beautified’ for ease of analysis) ______________________ 6
Figure 7 – Deobfuscation of the new ‘script’ element ‘src’ attribute ___ 6
Figure 8 – Deobfuscation of the comparison string, a substring of the ‘src’ attribute __________________________________ 6
Figure 9 – Obfuscated script hosted on ‘examhome[.]net’ ___ 7
Figure 10 – Deobfuscation of the web analytics script __ 8
Figure 11 – Deobfuscation of the ‘script’ tag creation ___ 8
Figure 12 – Deobfuscation of the ‘src’ attribute__ 8
Figure 13 – Obfuscated script hosted on ‘mp3menu[.]org’ ___ 9
Figure 14 – Deobfuscation of the final script __ 9
Figure 15 – Deobfuscation of the final URL ___ 9
Figure 16 - Example CyberChef output __ 11

 13
Confidential | CyberInt Copyright © All Rights Reserved 2018

United Kingdom
Tel: +442035141515
25 Old Broad Street | EC2N 1HN | London | United Kingdom

USA

Tel: +972-3-7286-777

3 Columbus Circle | NY 10019 | New York | USA

Israel

Tel: +972-3-7286777 Fax:+972-3-7286777

Ha-Mefalsim 17 St | 4951447 | Kiriat Arie Petah Tikva | Israel

Singapore

Tel: +65-3163-5760

10 Anson Road | #33-04A International Plaza 079903 | Singapore

sales@cyberint.com

mailto:sales@cyberint.com

